March 10, 2011

Dear Stakeholder,

Re: Municipal Class Environmental Assessment (Schedule B)
Reconstruction of White’s Bridge on Columbus Road
West of Country Lane
Town of Whitby
Our Project No. 10361

The Town of Whitby (Town) is conducting a Municipal Class Environmental Assessment (EA) - Schedule B to evaluate options and to develop a preferred alternative for the reconstruction of White’s Bridge on Columbus Road. The study is carried out in accordance with the requirements of the Municipal Class Environmental Assessment (October 2000, as amended in 2007).

To fulfill the consultation requirement for this EA study, we are providing the enclosed Project Information Package for your review and comment. This Package includes the problem identified, site conditions, alternatives considered, the recommended solution and other information pertaining to this EA study.

Since the project is located in a rural environment and only three (3) landowners are affected, the Town will not hold a formal Public Information Centre (PIC) but will provide all stakeholders and affected landowners with the enclosed Project Information Package. Please note that this package is also available to be reviewed on the Town's website (www.whitby.ca > Town Hall > Public works > Engineering Services > Environmental Assessments) for public review.

...2/
Your comments on this project are welcomed and appreciated. At the conclusion of the study, a Project File Report will be prepared to document the entire EA process. A Notice of Completion will be sent to you when this Project File Report is available for your review. In the mean time, if you have any questions or want to comment on this study, please contact Horace Look at the Town of Whitby.

Horace Look, P. Eng
Project Engineer
Works Department
Town of Whitby
575 Rossland Road East
Whitby, Ontario, L1N 2M8

Phone: (905) 668-5803
Fax: (905) 686-7005
E-mail: lookh@whitby.ca

Yours truly,

SRM ASSOCIATES

Erica Tsang, MES, BES
Project Coordinator,
Environmental Assessments

John Semjan, P. Eng
Principal,
Manager, Transportation Structures
Public Works Department

Engineering Section
(905) 430-4307

March 8, 2011

Property Owner

Re: Public Information Package
Municipal Class Environmental Assessment (EA) - Schedule B
Reconstruction of White's Bridge on Columbus Road
Town of Whitby

The Town of Whitby (Town) is conducting a Municipal Class Environmental Assessment (EA) to evaluate options and to develop a preferred alternative for the reconstruction of White's Bridge on Columbus Road. The study is carried out in accordance with the requirements of the Municipal Class Environmental Assessment Process (October 2000, as amended in 2007).

Please find enclosed a Project Information Package for your review and comment. This Package includes the problem identified, site conditions, alternative solutions considered and the recommended solution to reconstruct the bridge. This package is also available on the Town's website (www.whitby.ca) for the public to review.

As you can see on the Conceptual Plan in the Package, the footprint of the future bridge approach will encroach on your property. As such, we would like to meet with you to discuss this issue. Please contact the undersigned at your earliest convenience to schedule a meeting.

At the conclusion of the study, a Project File Report will be prepared to document the entire EA process. A Notice of Completion will be sent to you when the Project File Report is available for review. In the meantime, if you have any questions, please contact the undersigned.
Yours truly,

[Signature]

Horace Look, P. Eng.
Project Engineer, Public Works Dept.
Tel: (905) 430-4307

HL/hl

c.c. Greg Hardy, Manager of Engineering Services, Public Works Dept.
STUDY AREA
- White’s Bridge over West Lynde Creek on Columbus Road 300m west of Country Lane.

PROBLEM
- There are structural and road geometry deficiencies in the area of White’s Bridge on Columbus Road.
CULTURAL ASSESSMENT:
A Stage 1 and 2 Archaeological Assessment was completed for the study site, and nothing of archaeological or heritage significance was discovered. The heritage significance of the bridge was reviewed with The Ministry of Tourism and Culture, and it was confirmed that a Heritage Impact Assessment was not necessary.

NATURAL FEATURES:
- Lynde Creek is a 3rd order stream within the Heber Down subwatershed, with headwaters located in the Oak Ridges Moraine.
- Following 1966, four driveways and several associated buildings were constructed to the east and west of the watercourse, branching out from Columbus Road.
- Between 1974 and 2009, a thickening of forest cover was observed upstream of the Columbus Road crossing - within the channel floodplain, and downstream of the crossing atop the western valley wall.
- Lynde Creek flows through its own modern alluvial deposits, underlain by stone-poor, carbonate-derived, silty to sandy glacial till.
- At the crossing location and downstream for approximately 90m the channel is backwater. This has promoted the deposition of fine bed materials, and contributed to the development of a channel bed with a relative lack of morphological variability.

REDSIDE DACE:
Cold, cool and warm water fish species have been sampled in Lynde Creek. Of particular interest is Redside Dace, which is a species at risk protected under the Endangered Species Act, 2007. As Redside Dace habitat, any instream work at White’s Bridge must be reviewed and approved by the Ontario Ministry of Natural Resources (MNRF), as well as the Central Lake Ontario Conservation Authority (CLOCA) and Fisheries and Oceans Canada (DFO). Further, instream work is restricted to the cold water construction timing window of July 1 to September 15.

TYPICAL CROSS SECTION OF LYNDE CREEK

SITE PHOTOGRAPHS

1. Channel upstream of White’s Bridge, viewed in the downstream direction.
2. White’s Bridge viewed from south of Columbus Road. Note that the wetted width spans the full width between the piers.
3. Lynde Creek and White’s Bridge viewed in the upstream direction. Note the quiescent flow due to backwatering.
4. Channel downstream of White’s Bridge, viewed in downstream direction. Note the dense riparian cover.

NATURAL HERITAGE FEATURES
<table>
<thead>
<tr>
<th>Category</th>
<th>Evaluation</th>
<th>Measure</th>
<th>Alternative 1: Do Nothing</th>
<th>Alternative 2: Bridge Repair</th>
<th>Alternative 3: Bridge Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Environment</td>
<td>Natural Habitat and Species</td>
<td>Extent of disturbance to natural vegetation communities</td>
<td>1 No impact to vegetation community.</td>
<td>1 A small area of vegetation would be removed for construction access for repairs, and there would be a time lag for full restoration of the area.</td>
<td>1 Vegetation removal would be required for bridge reconstruction and extensive re-grading. There would be a time lag for full restoration of the area.</td>
</tr>
<tr>
<td></td>
<td>Terrestrial and avian wildlife habitat</td>
<td>1 No impact to terrestrial and avian wildlife habitat.</td>
<td>1 Short-term disturbance to terrestrial and avian wildlife habitat, mitigated with a restoration plan and use of appropriate timing windows for construction.</td>
<td>1 Relative to the overall width of the valley corridor, a small proportion of wildlife habitat would be impacted with a new bridge structure. Short-term disturbances to vegetation and wildlife habitat would be mitigated with a restoration plan and use of appropriate timing windows for construction. The lack of vegetation cover for wildlife habitat along the watercourse can be improved by vegetation restoration plans associated with bridge reconstruction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect on species at risk</td>
<td>1 No impact to habitat of species at risk.</td>
<td>1 No impact to habitat of species at risk.</td>
<td>1 Redside Dace were identified in the vicinity of the bridge site. Interactions with Redside Dace habitat would occur during construction, but only during the approved timing window. However, the proposed habitat improvements would result in better stream habitat and cover at project completion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk to fish habitat</td>
<td>1 No impact to the existing fish habitat.</td>
<td>1 Fish habitat would not be disturbed based on the condition of the existing piers since no repairs are considered necessary for these components.</td>
<td>1 Fish habitat would be disturbed during construction, but would only occur in the approved timing window. The proposed habitat improvements would result in better stream habitat and cover at project completion.</td>
<td></td>
</tr>
<tr>
<td>Forest Cover</td>
<td>Extent of disturbance to forest cover</td>
<td>1 No impact to the existing forest cover.</td>
<td>1 A small amount of mature canopy cover may require removal for construction access for repairs. Tree removals would be mitigated with a compensation planting plan, consisting of native species.</td>
<td>1 Mature tree canopy within the right-of-way would require removal for construction; however, approximately 50% of the individuals are non-native species. Tree removals would be mitigated with a compensation planting plan, consisting of native species.</td>
<td></td>
</tr>
<tr>
<td>Watercourse</td>
<td>Effect on watercourse geomorphology</td>
<td>1 The existing three-span structure, including piers, restricts the natural meander form of the watercourse.</td>
<td>1 The existing three-span structure, including piers, restricts the natural meander form of the watercourse.</td>
<td>1 The new bridge span would be greater than the existing span, which would allow for the construction of a low-flow channel under the bridge to improve natural watercourse form and function.</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Evaluation</td>
<td>Measure</td>
<td>Alternative 1: Do Nothing</td>
<td>Alternative 2: Bridge Repair</td>
<td>Alternative 3: Bridge Reconstruction</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No impact to hydrology</td>
<td>No impact to hydrology</td>
<td>A larger bridge would have increased deck drainage area, resulting in more stormwater runoff from the paved surfaces. However, the current bridge design has deck drains (allowing road runoff to discharge directly into the watercourse). The new design would direct the runoff to spillways for treatment, before discharging to the creek (potential water quality improvements).</td>
</tr>
<tr>
<td>Effect on hydrology (local rainfall / runoff pattern)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydraulics would be improved with a longer span by providing greater overbank flow access. Hydraulics would also be improved with the removal of the piers.</td>
</tr>
<tr>
<td>Effect on hydraulics (movement of water under the bridge)</td>
<td></td>
<td>No impact to hydraulics.</td>
<td>No impact to hydraulics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valleyland</td>
<td>Impact to wildlife corridor functions</td>
<td>The existing three-span structure, including piers, restricts wildlife corridor functions.</td>
<td>The existing three-span structure, including piers, restricts wildlife corridor functions.</td>
<td></td>
<td>The new bridge span would be greater than the existing span, thereby increasing the area available under the bridge for wildlife corridor functions. Further, piers would be removed to allow for the construction of a low-flow channel and overbank area for terrestrial wildlife passage under the bridge.</td>
</tr>
<tr>
<td>Construction Impacts on natural environment</td>
<td>Noise disturbance to natural habitats</td>
<td>No additional noise disturbance beyond existing sources.</td>
<td>Construction noise disturbance during the bridge repair is anticipated to be 2 to 3 months.</td>
<td>Construction noise disturbance during the bridge reconstruction is anticipated to be 5 months.</td>
<td>No dewatering is required for construction works; therefore no disturbance to local groundwater will occur.</td>
</tr>
<tr>
<td></td>
<td>Disturbance to local groundwater</td>
<td>No disturbance to local groundwater.</td>
<td>No disturbance to local groundwater.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedimentation of the watercourse</td>
<td>No sediment input beyond existing sources.</td>
<td>Low potential for sediment to enter the watercourse as a result of repair work. Sediment input would be minimized with a comprehensive erosion and sediment control plan.</td>
<td>Moderate potential for sediment to enter the watercourse as a result of bridge construction activities. Sediment input would be minimized with a comprehensive erosion and sediment control plan.</td>
<td></td>
</tr>
<tr>
<td>Social Environment</td>
<td>Public Safety</td>
<td>Bridge deck width</td>
<td>The existing deck width does not conform to current bridge design guidelines.</td>
<td>The existing deck width does not conform to current bridge design guidelines.</td>
<td>The new bridge would have an increased deck width in accordance with current bridge design guidelines.</td>
</tr>
<tr>
<td></td>
<td>Load carrying capacity of the bridge</td>
<td>The load carrying capacity of the existing bridge is low.</td>
<td>The load carrying capacity of the existing bridge is low.</td>
<td>The new bridge would be designed in accordance with current bridge design guidelines to safely support all legal traffic loads.</td>
<td></td>
</tr>
</tbody>
</table>
EVALUATION MATRIX FOR WHITE’S BRIDGE MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT

<table>
<thead>
<tr>
<th>Category</th>
<th>Evaluation</th>
<th>Measure</th>
<th>Alternative 1: Do Nothing</th>
<th>Alternative 2: Bridge Repair</th>
<th>Alternative 3: Bridge Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road grade</td>
<td></td>
<td></td>
<td>The existing road grade is substandard.</td>
<td>The existing road grade is substandard.</td>
<td>The new bridge would accommodate a future road profile which would meet current road design standards.</td>
</tr>
<tr>
<td>Land Tenancy Impact to existing properties</td>
<td></td>
<td></td>
<td>No property owners would be affected.</td>
<td>No property owners would be affected.</td>
<td>Property beyond the existing road right-of-way would be required on both sides of the bridge to accommodate the larger structure, wider approach roads, and relocated utility on the north side.</td>
</tr>
<tr>
<td>Cycling and Leisure Trails Plan Compatibility with the Cycling and Leisure Trails Plan</td>
<td></td>
<td></td>
<td>The existing deck width is too narrow for cycling.</td>
<td>The existing deck width is too narrow for cycling.</td>
<td>The new bridge would have an increased deck width that would accommodate cyclists.</td>
</tr>
<tr>
<td>Construction Disturbance to Residents Construction Noise</td>
<td></td>
<td></td>
<td>No construction noise.</td>
<td>The repair work would generate construction noise, but would be a temporary, short-term impact.</td>
<td>Bridge reconstruction would generate construction noise due to construction vehicles. The noise disturbance includes driving piles for approximately one week.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No impact to existing traffic movement.</td>
<td>Bridge closure and traffic detour would be required for a short period during bridge repair works</td>
<td>Road closure and traffic detour around the site would be required for approximately five months during bridge reconstruction.</td>
</tr>
<tr>
<td>Vibration disturbance to local residents</td>
<td></td>
<td></td>
<td>No construction activities, therefore no vibration.</td>
<td>Repair works typically would not generate vibration.</td>
<td>Vibration in the vicinity of the new bridge would occur during pile driving. Pile driving would last approximately one week.</td>
</tr>
<tr>
<td>Dust accumulation during construction</td>
<td></td>
<td></td>
<td>No dust accumulation beyond normal existing conditions.</td>
<td>Minor dust accumulation would occur during bridge repair but would be a temporary, short-term impact.</td>
<td>Some dust would accumulate during the construction of the approach roads to the reconstructed bridge.</td>
</tr>
<tr>
<td>Impact on well water supplies</td>
<td></td>
<td></td>
<td>No interaction with the existing groundwater table.</td>
<td>No interaction with the existing groundwater table.</td>
<td>Foundations for the new bridge would be situated above the existing ground water level. Consequently, no impact to nearby wells is expected.</td>
</tr>
<tr>
<td>Economic Environment Capital Cost</td>
<td></td>
<td></td>
<td>No capital costs.</td>
<td>There would be moderate capital cost required for bridge repairs in the short-term.</td>
<td>There would be significant capital cost for construction of a new bridge.</td>
</tr>
<tr>
<td>Property Cost Cost of acquiring property</td>
<td></td>
<td></td>
<td>No additional property is required.</td>
<td>No additional property is required.</td>
<td>Acquisition of additional property on both sides of the bridge would be necessary to accommodate the wider structure.</td>
</tr>
</tbody>
</table>
EVALUATION MATRIX FOR WHITE'S BRIDGE MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT

<table>
<thead>
<tr>
<th>Category</th>
<th>Evaluation</th>
<th>Measure</th>
<th>Alternative 1: Do Nothing</th>
<th>Alternative 2: Bridge Repair</th>
<th>Alternative 3: Bridge Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>Cost of maintenance</td>
<td>☒ On-going maintenance costs would be high due to the type of bridge structure and its existing deteriorated condition.</td>
<td>☒ On-going maintenance costs would be moderate, even after repair, due to the type of bridge structure and its existing deteriorated condition.</td>
<td>☒ On-going maintenance costs for a new bridge would be low.</td>
<td></td>
</tr>
<tr>
<td>Cultural Environment</td>
<td>Archaeological Resources</td>
<td>Impact to historic artifacts</td>
<td>☒ No soil disturbance, therefore no potential to affect historic artifacts.</td>
<td>☒ No soil disturbance, therefore no potential to affect historic artifacts.</td>
<td>☒ Soil excavation would be required; however, the cultural heritage assessment indicated minimal potential to unearth historic artifacts.</td>
</tr>
<tr>
<td></td>
<td>Built Heritage</td>
<td>Impact to culturally significant buildings / structures</td>
<td>☒ There are no built heritage features in the study area.</td>
<td>☒ There are no built heritage features in the study area.</td>
<td>☒ There are no built heritage features in the study area.</td>
</tr>
<tr>
<td>Technical Factors</td>
<td>Construction</td>
<td>Construction duration & complexity</td>
<td>☒ No construction required.</td>
<td>☒ Moderate to lengthy construction duration. Repairs to older structures are typically complex due to structure type, lack of existing design details, and condition. Moderate construction duration would be associated with this alternative.</td>
<td>☒ Bridge reconstruction is not complex, but requires a relatively long construction time.</td>
</tr>
<tr>
<td></td>
<td>Utility Conflict</td>
<td>Conflict with utilities in the proposed construction area</td>
<td>☒ No construction required.</td>
<td>☒ Bridge repair does not require interaction with existing utilities.</td>
<td>☒ An existing hydro plant would need to be relocated to accommodate a wider bridge.</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td>☒ Alternative 1 fails to address the bridge safety and design deficiencies identified in the problem statement for this study. Moreover, on-going maintenance costs are high, and the current design restricts wildlife corridor function and natural watercourse meander form.</td>
<td>☒ Alternative 2 provides a temporary fix for bridge safety issues but does not address design deficiencies identified in the problem statement for this study (substandard deck width and road grade). Eventually, full bridge reconstruction would be required to meet current bridge code and road standards.</td>
<td>☒ Alternative 3 addresses the identified safety issues and would meet current bridge code standards. Temporary disturbances would be associated with construction, but the new bridge design would provide an opportunity to improve watercourse form, wildlife corridor functions of the valley, future on-road bikeways and accommodate current road design standards.</td>
</tr>
</tbody>
</table>

LEGEND

- Least Preferred
- Neutral
- Most Preferred
WHITE’S BRIDGE MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT

CONCEPTUAL PLAN

NEXT STEPS

- Review public, stakeholder and agency comments received;
- Refine the preferred alternative to best incorporate public and agency input;
- File Notice of Study Completion and place the Project File Report on public record for a 30-day review period. Filing is expected in Spring 2011.
- Subject to the outcome of the Environmental Assessment and approval from Council, the construction is scheduled for 2013.

Your comments are encouraged and appreciated, as this will provide us with an opportunity to address significant issues and concerns.

TO PROVIDE COMMENTS OR REQUEST FURTHER INFORMATION, PLEASE CONTACT:

Town of Whitby
Horace Look, P.Eng.
Project Engineer
575 Rossland Road East,
Whitby, Ontario, L1N 2M8
905-668-5803 Ext. 2336
lookh@whitby.ca

SRM Associates
Erica Tsang, M.E.S., B.Eng.
Project Coordinator, Environmental Assessments
110 Scotia Court, Unit 41,
Whitby, Ontario, L1N 8Y7
905-508-3371
etsang@srmaassociates.org

A copy of this information is also available on the Town’s Website www.whitby.ca > Town Hall > Public Works > Engineering Services > Environmental Assessments

PREFERRED ALTERNATIVE:
ALTERNATIVE 3 - BRIDGE RECONSTRUCTION
Municipal Class Environmental Assessment (Schedule B)
Reconstruction of White’s Bridge
on Columbus Road west of Country Lane
Town of Whitby

PUBLIC INFORMATION PACKAGE
March 10, 2011

PLEASE PROVIDE YOUR COMMENTS IN THE SPACE BELOW (ADDITIONAL SPACE IS PROVIDED ON THE BACK OF THIS SHEET)

Name (Please Print):

Mailing Address: Phone:

Home / Cell (circle one)

Email Address: (Please Print)

Thank you for providing input on this project. Comments will be maintained for reference throughout the project and will become part of the public record. Under the Freedom of Information Act and Protection of Privacy Act and the Environmental Assessment Act, unless otherwise stated in the submission, any personal information such as name, address, telephone number and property location included in a submission will become part of the public record files for this matter and will be released, if requested, to any person. Please submit comments by April 11, 2010 to either contact below:

Erica Tsang - MES, BES, Project Coordinator
SRM Associates
110 Scotia Court, Unit 41, Whitby, Ontario, L1N 8Y7
Tel: (905) 508-3371; Fax (905) 508-2599
etsang@srmassociates.org

Horace Look - P. Eng, Project Engineer
The Town of Whitby
575 Rossland Rd. E., Whitby, ON L1N 2M8
Tel: (905) 686-5803 ext. 2336; Fax (905) 686-7005
lookh@whitby.ca
THANK YOU FOR YOUR COMMENTS.
Municipal Class Environmental Assessment (Schedule B)
Reconstruction of White’s Bridge
on Columbus Road west of Country Lane
Town of Whitby

PUBLIC INFORMATION PACKAGE
March 10, 2011

PLEASE PROVIDE YOUR COMMENTS IN THE SPACE BELOW (ADDITIONAL SPACE IS PROVIDED ON THE BACK OF THIS SHEET)

<table>
<thead>
<tr>
<th>Name (Please Print):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailing Address:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Email Address:</th>
</tr>
</thead>
</table>

(Please Print) **WE SUPPORT ALTERNATIVE # 3 THE EXISTING BRIDGE HAS ALREADY BEEN “FIXED” TOO MANY TIMES. HOPEFULLY THIS CAN BE RESOLVED BEFORE THE EXISTING BRIDGE BECOMES UNSAFE FOR ALL.**

Thank you for providing input on this project. Comments will be maintained for reference throughout the project and will become part of the public record. Under the Freedom of Information Act and Protection of Privacy Act and the Environmental Assessment Act, unless otherwise stated in the submission, any personal information such as name, address, telephone number and property location included in a submission will become part of the public record files for this matter and will be released, if requested, to any person. Please submit comments by April 11, 2010 to either contact below:

Erica Tsang - MES, BES, Project Coordinator
SRM Associates
110 Scotia Court, Unit 41, Whitby, Ontario, L1N 8Y7
Tel: (905) 508-3371; Fax: (905) 508-2599
etsang@srmassociates.org

Horace Look - P. Eng, Project Engineer
The Town of Whitby
575 Rossland Rd. E., Whitby, ON L1N 2M2
Tel: (905) 686-5803 ext. 2336, Fax (905) 686-7005
lookh@whitby.ca
<table>
<thead>
<tr>
<th>date</th>
<th>March 22, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>attention</td>
<td>ERICA TSANG</td>
</tr>
<tr>
<td>company</td>
<td>SRM ASSOCIATES</td>
</tr>
<tr>
<td>fax no.</td>
<td>905-508-2599</td>
</tr>
<tr>
<td>cc</td>
<td></td>
</tr>
<tr>
<td>from</td>
<td>[Signature]</td>
</tr>
<tr>
<td>phone</td>
<td>905-832-7398/44</td>
</tr>
<tr>
<td>fax</td>
<td>905-832-7391</td>
</tr>
<tr>
<td>email</td>
<td></td>
</tr>
<tr>
<td>no. of pages</td>
<td>2 (including this page)</td>
</tr>
</tbody>
</table>

The attached contact sheet

[Signature]

cc Horace Leck
Town of Whitby

Confidential: This fax document is intended only for the named addressee(s). This communication may contain information that is privileged, confidential or otherwise protected from disclosure and it must not be disclosed, copied, forwarded or distributed without authorization. If you have received this fax in error, please notify the sender immediately and confidentially shred the documentation. Thank you for your cooperation.
Name (Please Print): Ken McBride

Mailing Address: 11200 Weston Road
Mark, ONT L6A1S7

Phone: 416-559-6691
Home (Cell) (circle one)

(Please Print) Trans Canada Pipelines does not have any above or below ground facilities within your study area.

Please remove us from your distribution list.

Signature: [Signature]

905-832-7344 (office)

Thank you for providing input on this project. Comments will be maintained for reference throughout the project and will become part of the public record. Under the Freedom of Information Act and Protection of Privacy Act and the Environmental Assessment Act, unless otherwise stated in the submission, any personal information such as name, address, telephone number and property location included in a submission will become part of the public record file for this matter and will be released, if requested, to any person. Please submit comments by April 11, 2010 to either contact below:

Erica Tsang - MES, BES, Project Coordinator
SRM Associates
110 Scotia Court, Unit 41, Whitby, Ontario, L1N 8Y7
Tel: (905) 508-3371; Fax (905) 508-2599
etsang@srmaassociates.org

Horace Look - P. Eng, Project Engineer
The Town of Whitby
575 Rossland Rd. E., Whitby, ON L1N 2M8
Tel: (905) 686-5803 ext. 2336; Fax (905) 686-7005
lookh@whitby.ca
Yes the Reconstruction of White's Bridge needs to be fixed.
Our only concerns are the upkeep of Country Lane South of Columbus Rd with the added amount of traffic during the closure of Columbus Rd.

To continue to call the bridge "White Bridge" as it is named after my grandfather "Mr. James White"